\r\n \r\n \r\n \r\n Projetado pela Agenda Assessoria, nosso sistema de consignação promove praticidade, produtividade e precisão para o\r\n progresso do seu negócio.\r\n \r\n O manual de introdução ao sistema está disponÃvel em nossa área de apoio.\r\n Clique aqui. \r\n \r\n \r\n\r\n \r\n\r\n \r\n \r\n \r\n
\r\n\r\n\r\n\r\n\r\n\r\n","import mod from \"-!../../node_modules/cache-loader/dist/cjs.js??ref--13-0!../../node_modules/thread-loader/dist/cjs.js!../../node_modules/babel-loader/lib/index.js!../../node_modules/cache-loader/dist/cjs.js??ref--1-0!../../node_modules/vue-loader/lib/index.js??vue-loader-options!./adm.vue?vue&type=script&lang=js\"; export default mod; export * from \"-!../../node_modules/cache-loader/dist/cjs.js??ref--13-0!../../node_modules/thread-loader/dist/cjs.js!../../node_modules/babel-loader/lib/index.js!../../node_modules/cache-loader/dist/cjs.js??ref--1-0!../../node_modules/vue-loader/lib/index.js??vue-loader-options!./adm.vue?vue&type=script&lang=js\"","import { render, staticRenderFns } from \"./adm.vue?vue&type=template&id=8a7fa95c&scoped=true\"\nimport script from \"./adm.vue?vue&type=script&lang=js\"\nexport * from \"./adm.vue?vue&type=script&lang=js\"\nimport style0 from \"./adm.vue?vue&type=style&index=0&id=8a7fa95c&prod&lang=scss&scoped=true\"\n\n\n/* normalize component */\nimport normalizer from \"!../../node_modules/vue-loader/lib/runtime/componentNormalizer.js\"\nvar component = normalizer(\n script,\n render,\n staticRenderFns,\n false,\n null,\n \"8a7fa95c\",\n null\n \n)\n\nexport default component.exports","import { factory } from '../utils/factory.js';\nimport { createEmptyMap, toObject } from '../utils/map.js';\nvar name = 'Parser';\nvar dependencies = ['evaluate'];\nexport var createParserClass = /* #__PURE__ */factory(name, dependencies, _ref => {\n var {\n evaluate\n } = _ref;\n /**\n * @constructor Parser\n * Parser contains methods to evaluate or parse expressions, and has a number\n * of convenience methods to get, set, and remove variables from memory. Parser\n * keeps a scope containing variables in memory, which is used for all\n * evaluations.\n *\n * Methods:\n * const result = parser.evaluate(expr) // evaluate an expression\n * const value = parser.get(name) // retrieve a variable from the parser\n * const values = parser.getAll() // retrieve all defined variables\n * parser.set(name, value) // set a variable in the parser\n * parser.remove(name) // clear a variable from the\n * // parsers scope\n * parser.clear() // clear the parsers scope\n *\n * Example usage:\n * const parser = new Parser()\n * // Note: there is a convenience method which can be used instead:\n * // const parser = new math.parser()\n *\n * // evaluate expressions\n * parser.evaluate('sqrt(3^2 + 4^2)') // 5\n * parser.evaluate('sqrt(-4)') // 2i\n * parser.evaluate('2 inch in cm') // 5.08 cm\n * parser.evaluate('cos(45 deg)') // 0.7071067811865476\n *\n * // define variables and functions\n * parser.evaluate('x = 7 / 2') // 3.5\n * parser.evaluate('x + 3') // 6.5\n * parser.evaluate('f(x, y) = x^y') // f(x, y)\n * parser.evaluate('f(2, 3)') // 8\n *\n * // get and set variables and functions\n * const x = parser.get('x') // 3.5\n * const f = parser.get('f') // function\n * const g = f(3, 2) // 9\n * parser.set('h', 500)\n * const i = parser.evaluate('h / 2') // 250\n * parser.set('hello', function (name) {\n * return 'hello, ' + name + '!'\n * })\n * parser.evaluate('hello(\"user\")') // \"hello, user!\"\n *\n * // clear defined functions and variables\n * parser.clear()\n *\n */\n function Parser() {\n if (!(this instanceof Parser)) {\n throw new SyntaxError('Constructor must be called with the new operator');\n }\n Object.defineProperty(this, 'scope', {\n value: createEmptyMap(),\n writable: false\n });\n }\n\n /**\n * Attach type information\n */\n Parser.prototype.type = 'Parser';\n Parser.prototype.isParser = true;\n\n /**\n * Parse and evaluate the given expression\n * @param {string | string[]} expr A string containing an expression,\n * for example \"2+3\", or a list with expressions\n * @return {*} result The result, or undefined when the expression was empty\n * @throws {Error}\n */\n Parser.prototype.evaluate = function (expr) {\n // TODO: validate arguments\n return evaluate(expr, this.scope);\n };\n\n /**\n * Get a variable (a function or variable) by name from the parsers scope.\n * Returns undefined when not found\n * @param {string} name\n * @return {* | undefined} value\n */\n Parser.prototype.get = function (name) {\n // TODO: validate arguments\n if (this.scope.has(name)) {\n return this.scope.get(name);\n }\n };\n\n /**\n * Get a map with all defined variables\n * @return {Object} values\n */\n Parser.prototype.getAll = function () {\n return toObject(this.scope);\n };\n\n /**\n * Get a map with all defined variables\n * @return {Map} values\n */\n Parser.prototype.getAllAsMap = function () {\n return this.scope;\n };\n\n /**\n * Set a symbol (a function or variable) by name from the parsers scope.\n * @param {string} name\n * @param {* | undefined} value\n */\n Parser.prototype.set = function (name, value) {\n this.scope.set(name, value);\n return value;\n };\n\n /**\n * Remove a variable from the parsers scope\n * @param {string} name\n */\n Parser.prototype.remove = function (name) {\n this.scope.delete(name);\n };\n\n /**\n * Clear the scope with variables and functions\n */\n Parser.prototype.clear = function () {\n this.scope.clear();\n };\n return Parser;\n}, {\n isClass: true\n});","import { errorTransform } from './utils/errorTransform.js';\nimport { factory } from '../../utils/factory.js';\nimport { createColumn } from '../../function/matrix/column.js';\nimport { isNumber } from '../../utils/is.js';\nvar name = 'column';\nvar dependencies = ['typed', 'Index', 'matrix', 'range'];\n\n/**\n * Attach a transform function to matrix.column\n * Adds a property transform containing the transform function.\n *\n * This transform changed the last `index` parameter of function column\n * from zero-based to one-based\n */\nexport var createColumnTransform = /* #__PURE__ */factory(name, dependencies, _ref => {\n var {\n typed,\n Index,\n matrix,\n range\n } = _ref;\n var column = createColumn({\n typed,\n Index,\n matrix,\n range\n });\n\n // @see: comment of column itself\n return typed('column', {\n '...any': function any(args) {\n // change last argument from zero-based to one-based\n var lastIndex = args.length - 1;\n var last = args[lastIndex];\n if (isNumber(last)) {\n args[lastIndex] = last - 1;\n }\n try {\n return column.apply(null, args);\n } catch (err) {\n throw errorTransform(err);\n }\n }\n });\n}, {\n isTransformFunction: true\n});","import { isBigNumber, isCollection, isNumber } from '../../../utils/is.js';\n\n/**\n * Change last argument dim from one-based to zero-based.\n */\nexport function lastDimToZeroBase(args) {\n if (args.length === 2 && isCollection(args[0])) {\n args = args.slice();\n var dim = args[1];\n if (isNumber(dim)) {\n args[1] = dim - 1;\n } else if (isBigNumber(dim)) {\n args[1] = dim.minus(1);\n }\n }\n return args;\n}","import { isConstantNode, isFunctionNode, isOperatorNode, isParenthesisNode } from '../../../utils/is.js';\nexport { isConstantNode, isSymbolNode as isVariableNode } from '../../../utils/is.js';\nexport function isNumericNode(x) {\n return isConstantNode(x) || isOperatorNode(x) && x.isUnary() && isConstantNode(x.args[0]);\n}\nexport function isConstantExpression(x) {\n if (isConstantNode(x)) {\n // Basic Constant types\n return true;\n }\n if ((isFunctionNode(x) || isOperatorNode(x)) && x.args.every(isConstantExpression)) {\n // Can be constant depending on arguments\n return true;\n }\n if (isParenthesisNode(x) && isConstantExpression(x.content)) {\n // Parenthesis are transparent\n return true;\n }\n return false; // Probably missing some edge cases\n}","import { isParenthesisNode } from '../../utils/is.js';\nimport { isConstantNode, isVariableNode, isNumericNode, isConstantExpression } from './simplify/wildcards.js';\nimport { factory } from '../../utils/factory.js';\nimport { createUtil } from './simplify/util.js';\nimport { hasOwnProperty } from '../../utils/object.js';\nimport { createEmptyMap, createMap } from '../../utils/map.js';\nvar name = 'simplify';\nvar dependencies = ['config', 'typed', 'parse', 'add', 'subtract', 'multiply', 'divide', 'pow', 'isZero', 'equal', 'resolve', 'simplifyConstant', 'simplifyCore', '?fraction', '?bignumber', 'mathWithTransform', 'matrix', 'AccessorNode', 'ArrayNode', 'ConstantNode', 'FunctionNode', 'IndexNode', 'ObjectNode', 'OperatorNode', 'ParenthesisNode', 'SymbolNode'];\nexport var createSimplify = /* #__PURE__ */factory(name, dependencies, _ref => {\n var {\n config,\n typed,\n parse,\n add,\n subtract,\n multiply,\n divide,\n pow,\n isZero,\n equal,\n resolve,\n simplifyConstant,\n simplifyCore,\n fraction,\n bignumber,\n mathWithTransform,\n matrix,\n AccessorNode,\n ArrayNode,\n ConstantNode,\n FunctionNode,\n IndexNode,\n ObjectNode,\n OperatorNode,\n ParenthesisNode,\n SymbolNode\n } = _ref;\n var {\n hasProperty,\n isCommutative,\n isAssociative,\n mergeContext,\n flatten,\n unflattenr,\n unflattenl,\n createMakeNodeFunction,\n defaultContext,\n realContext,\n positiveContext\n } = createUtil({\n FunctionNode,\n OperatorNode,\n SymbolNode\n });\n\n /**\n * Simplify an expression tree.\n *\n * A list of rules are applied to an expression, repeating over the list until\n * no further changes are made.\n * It's possible to pass a custom set of rules to the function as second\n * argument. A rule can be specified as an object, string, or function:\n *\n * const rules = [\n * { l: 'n1*n3 + n2*n3', r: '(n1+n2)*n3' },\n * 'n1*n3 + n2*n3 -> (n1+n2)*n3',\n * function (node) {\n * // ... return a new node or return the node unchanged\n * return node\n * }\n * ]\n *\n * String and object rules consist of a left and right pattern. The left is\n * used to match against the expression and the right determines what matches\n * are replaced with. The main difference between a pattern and a normal\n * expression is that variables starting with the following characters are\n * interpreted as wildcards:\n *\n * - 'n' - Matches any node [Node]\n * - 'c' - Matches a constant literal (5 or 3.2) [ConstantNode]\n * - 'cl' - Matches a constant literal; same as c [ConstantNode]\n * - 'cd' - Matches a decimal literal (5 or -3.2) [ConstantNode or unaryMinus wrapping a ConstantNode]\n * - 'ce' - Matches a constant expression (-5 or √3) [Expressions consisting of only ConstantNodes, functions, and operators]\n * - 'v' - Matches a variable; anything not matched by c (-5 or x) [Node that is not a ConstantNode]\n * - 'vl' - Matches a variable literal (x or y) [SymbolNode]\n * - 'vd' - Matches a non-decimal expression; anything not matched by cd (x or √3) [Node that is not a ConstantNode or unaryMinus that is wrapping a ConstantNode]\n * - 've' - Matches a variable expression; anything not matched by ce (x or 2x) [Expressions that contain a SymbolNode or other non-constant term]\n *\n * The default list of rules is exposed on the function as `simplify.rules`\n * and can be used as a basis to built a set of custom rules. Note that since\n * the `simplifyCore` function is in the default list of rules, by default\n * simplify will convert any function calls in the expression that have\n * operator equivalents to their operator forms.\n *\n * To specify a rule as a string, separate the left and right pattern by '->'\n * When specifying a rule as an object, the following keys are meaningful:\n * - l - the left pattern\n * - r - the right pattern\n * - s - in lieu of l and r, the string form that is broken at -> to give them\n * - repeat - whether to repeat this rule until the expression stabilizes\n * - assuming - gives a context object, as in the 'context' option to\n * simplify. Every property in the context object must match the current\n * context in order, or else the rule will not be applied.\n * - imposeContext - gives a context object, as in the 'context' option to\n * simplify. Any settings specified will override the incoming context\n * for all matches of this rule.\n *\n * For more details on the theory, see:\n *\n * - [Strategies for simplifying math expressions (Stackoverflow)](https://stackoverflow.com/questions/7540227/strategies-for-simplifying-math-expressions)\n * - [Symbolic computation - Simplification (Wikipedia)](https://en.wikipedia.org/wiki/Symbolic_computation#Simplification)\n *\n * An optional `options` argument can be passed as last argument of `simplify`.\n * Currently available options (defaults in parentheses):\n * - `consoleDebug` (false): whether to write the expression being simplified\n * and any changes to it, along with the rule responsible, to console\n * - `context` (simplify.defaultContext): an object giving properties of\n * each operator, which determine what simplifications are allowed. The\n * currently meaningful properties are commutative, associative,\n * total (whether the operation is defined for all arguments), and\n * trivial (whether the operation applied to a single argument leaves\n * that argument unchanged). The default context is very permissive and\n * allows almost all simplifications. Only properties differing from\n * the default need to be specified; the default context is used as a\n * fallback. Additional contexts `simplify.realContext` and\n * `simplify.positiveContext` are supplied to cause simplify to perform\n * just simplifications guaranteed to preserve all values of the expression\n * assuming all variables and subexpressions are real numbers or\n * positive real numbers, respectively. (Note that these are in some cases\n * more restrictive than the default context; for example, the default\n * context will allow `x/x` to simplify to 1, whereas\n * `simplify.realContext` will not, as `0/0` is not equal to 1.)\n * - `exactFractions` (true): whether to try to convert all constants to\n * exact rational numbers.\n * - `fractionsLimit` (10000): when `exactFractions` is true, constants will\n * be expressed as fractions only when both numerator and denominator\n * are smaller than `fractionsLimit`.\n *\n * Syntax:\n *\n * math.simplify(expr)\n * math.simplify(expr, rules)\n * math.simplify(expr, rules)\n * math.simplify(expr, rules, scope)\n * math.simplify(expr, rules, scope, options)\n * math.simplify(expr, scope)\n * math.simplify(expr, scope, options)\n *\n * Examples:\n *\n * math.simplify('2 * 1 * x ^ (2 - 1)') // Node \"2 * x\"\n * math.simplify('2 * 3 * x', {x: 4}) // Node \"24\"\n * const f = math.parse('2 * 1 * x ^ (2 - 1)')\n * math.simplify(f) // Node \"2 * x\"\n * math.simplify('0.4 * x', {}, {exactFractions: true}) // Node \"x * 2 / 5\"\n * math.simplify('0.4 * x', {}, {exactFractions: false}) // Node \"0.4 * x\"\n *\n * See also:\n *\n * simplifyCore, derivative, evaluate, parse, rationalize, resolve\n *\n * @param {Node | string} expr\n * The expression to be simplified\n * @param {SimplifyRule[]} [rules]\n * Optional list with custom rules\n * @param {Object} [scope] Optional scope with variables\n * @param {SimplifyOptions} [options] Optional configuration settings\n * @return {Node} Returns the simplified form of `expr`\n */\n typed.addConversion({\n from: 'Object',\n to: 'Map',\n convert: createMap\n });\n var simplify = typed('simplify', {\n Node: _simplify,\n 'Node, Map': (expr, scope) => _simplify(expr, false, scope),\n 'Node, Map, Object': (expr, scope, options) => _simplify(expr, false, scope, options),\n 'Node, Array': _simplify,\n 'Node, Array, Map': _simplify,\n 'Node, Array, Map, Object': _simplify\n });\n typed.removeConversion({\n from: 'Object',\n to: 'Map',\n convert: createMap\n });\n simplify.defaultContext = defaultContext;\n simplify.realContext = realContext;\n simplify.positiveContext = positiveContext;\n function removeParens(node) {\n return node.transform(function (node, path, parent) {\n return isParenthesisNode(node) ? removeParens(node.content) : node;\n });\n }\n\n // All constants that are allowed in rules\n var SUPPORTED_CONSTANTS = {\n true: true,\n false: true,\n e: true,\n i: true,\n Infinity: true,\n LN2: true,\n LN10: true,\n LOG2E: true,\n LOG10E: true,\n NaN: true,\n phi: true,\n pi: true,\n SQRT1_2: true,\n SQRT2: true,\n tau: true\n // null: false,\n // undefined: false,\n // version: false,\n };\n\n // Array of strings, used to build the ruleSet.\n // Each l (left side) and r (right side) are parsed by\n // the expression parser into a node tree.\n // Left hand sides are matched to subtrees within the\n // expression to be parsed and replaced with the right\n // hand side.\n // TODO: Add support for constraints on constants (either in the form of a '=' expression or a callback [callback allows things like comparing symbols alphabetically])\n // To evaluate lhs constants for rhs constants, use: { l: 'c1+c2', r: 'c3', evaluate: 'c3 = c1 + c2' }. Multiple assignments are separated by ';' in block format.\n // It is possible to get into an infinite loop with conflicting rules\n simplify.rules = [simplifyCore,\n // { l: 'n+0', r: 'n' }, // simplifyCore\n // { l: 'n^0', r: '1' }, // simplifyCore\n // { l: '0*n', r: '0' }, // simplifyCore\n // { l: 'n/n', r: '1'}, // simplifyCore\n // { l: 'n^1', r: 'n' }, // simplifyCore\n // { l: '+n1', r:'n1' }, // simplifyCore\n // { l: 'n--n1', r:'n+n1' }, // simplifyCore\n {\n l: 'log(e)',\n r: '1'\n },\n // temporary rules\n // Note initially we tend constants to the right because like-term\n // collection prefers the left, and we would rather collect nonconstants\n {\n s: 'n-n1 -> n+-n1',\n // temporarily replace 'subtract' so we can further flatten the 'add' operator\n assuming: {\n subtract: {\n total: true\n }\n }\n }, {\n s: 'n-n -> 0',\n // partial alternative when we can't always subtract\n assuming: {\n subtract: {\n total: false\n }\n }\n }, {\n s: '-(cl*v) -> v * (-cl)',\n // make non-constant terms positive\n assuming: {\n multiply: {\n commutative: true\n },\n subtract: {\n total: true\n }\n }\n }, {\n s: '-(cl*v) -> (-cl) * v',\n // non-commutative version, part 1\n assuming: {\n multiply: {\n commutative: false\n },\n subtract: {\n total: true\n }\n }\n }, {\n s: '-(v*cl) -> v * (-cl)',\n // non-commutative version, part 2\n assuming: {\n multiply: {\n commutative: false\n },\n subtract: {\n total: true\n }\n }\n }, {\n l: '-(n1/n2)',\n r: '-n1/n2'\n }, {\n l: '-v',\n r: 'v * (-1)'\n },\n // finish making non-constant terms positive\n {\n l: '(n1 + n2)*(-1)',\n r: 'n1*(-1) + n2*(-1)',\n repeat: true\n },\n // expand negations to achieve as much sign cancellation as possible\n {\n l: 'n/n1^n2',\n r: 'n*n1^-n2'\n },\n // temporarily replace 'divide' so we can further flatten the 'multiply' operator\n {\n l: 'n/n1',\n r: 'n*n1^-1'\n }, {\n s: '(n1*n2)^n3 -> n1^n3 * n2^n3',\n assuming: {\n multiply: {\n commutative: true\n }\n }\n }, {\n s: '(n1*n2)^(-1) -> n2^(-1) * n1^(-1)',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n },\n // expand nested exponentiation\n {\n s: '(n ^ n1) ^ n2 -> n ^ (n1 * n2)',\n assuming: {\n divide: {\n total: true\n }\n } // 1/(1/n) = n needs 1/n to exist\n },\n // collect like factors; into a sum, only do this for nonconstants\n {\n l: ' vd * ( vd * n1 + n2)',\n r: 'vd^2 * n1 + vd * n2'\n }, {\n s: ' vd * (vd^n4 * n1 + n2) -> vd^(1+n4) * n1 + vd * n2',\n assuming: {\n divide: {\n total: true\n }\n } // v*1/v = v^(1+-1) needs 1/v\n }, {\n s: 'vd^n3 * ( vd * n1 + n2) -> vd^(n3+1) * n1 + vd^n3 * n2',\n assuming: {\n divide: {\n total: true\n }\n }\n }, {\n s: 'vd^n3 * (vd^n4 * n1 + n2) -> vd^(n3+n4) * n1 + vd^n3 * n2',\n assuming: {\n divide: {\n total: true\n }\n }\n }, {\n l: 'n*n',\n r: 'n^2'\n }, {\n s: 'n * n^n1 -> n^(n1+1)',\n assuming: {\n divide: {\n total: true\n }\n } // n*1/n = n^(-1+1) needs 1/n\n }, {\n s: 'n^n1 * n^n2 -> n^(n1+n2)',\n assuming: {\n divide: {\n total: true\n }\n } // ditto for n^2*1/n^2\n },\n // Unfortunately, to deal with more complicated cancellations, it\n // becomes necessary to simplify constants twice per pass. It's not\n // terribly expensive compared to matching rules, so this should not\n // pose a performance problem.\n simplifyConstant,\n // First: before collecting like terms\n\n // collect like terms\n {\n s: 'n+n -> 2*n',\n assuming: {\n add: {\n total: true\n }\n } // 2 = 1 + 1 needs to exist\n }, {\n l: 'n+-n',\n r: '0'\n }, {\n l: 'vd*n + vd',\n r: 'vd*(n+1)'\n },\n // NOTE: leftmost position is special:\n {\n l: 'n3*n1 + n3*n2',\n r: 'n3*(n1+n2)'\n },\n // All sub-monomials tried there.\n {\n l: 'n3^(-n4)*n1 + n3 * n2',\n r: 'n3^(-n4)*(n1 + n3^(n4+1) *n2)'\n }, {\n l: 'n3^(-n4)*n1 + n3^n5 * n2',\n r: 'n3^(-n4)*(n1 + n3^(n4+n5)*n2)'\n },\n // noncommutative additional cases (term collection & factoring)\n {\n s: 'n*vd + vd -> (n+1)*vd',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'vd + n*vd -> (1+n)*vd',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'n1*n3 + n2*n3 -> (n1+n2)*n3',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'n^n1 * n -> n^(n1+1)',\n assuming: {\n divide: {\n total: true\n },\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'n1*n3^(-n4) + n2 * n3 -> (n1 + n2*n3^(n4 + 1))*n3^(-n4)',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'n1*n3^(-n4) + n2 * n3^n5 -> (n1 + n2*n3^(n4 + n5))*n3^(-n4)',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n l: 'n*cd + cd',\n r: '(n+1)*cd'\n }, {\n s: 'cd*n + cd -> cd*(n+1)',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, {\n s: 'cd + cd*n -> cd*(1+n)',\n assuming: {\n multiply: {\n commutative: false\n }\n }\n }, simplifyConstant,\n // Second: before returning expressions to \"standard form\"\n\n // make factors positive (and undo 'make non-constant terms positive')\n {\n s: '(-n)*n1 -> -(n*n1)',\n assuming: {\n subtract: {\n total: true\n }\n }\n }, {\n s: 'n1*(-n) -> -(n1*n)',\n // in case * non-commutative\n assuming: {\n subtract: {\n total: true\n },\n multiply: {\n commutative: false\n }\n }\n },\n // final ordering of constants\n {\n s: 'ce+ve -> ve+ce',\n assuming: {\n add: {\n commutative: true\n }\n },\n imposeContext: {\n add: {\n commutative: false\n }\n }\n }, {\n s: 'vd*cd -> cd*vd',\n assuming: {\n multiply: {\n commutative: true\n }\n },\n imposeContext: {\n multiply: {\n commutative: false\n }\n }\n },\n // undo temporary rules\n // { l: '(-1) * n', r: '-n' }, // #811 added test which proved this is redundant\n {\n l: 'n+-n1',\n r: 'n-n1'\n },\n // undo replace 'subtract'\n {\n l: 'n+-(n1)',\n r: 'n-(n1)'\n }, {\n s: 'n*(n1^-1) -> n/n1',\n // undo replace 'divide'; for * commutative\n assuming: {\n multiply: {\n commutative: true\n }\n } // o.w. / not conventional\n }, {\n s: 'n*n1^-n2 -> n/n1^n2',\n assuming: {\n multiply: {\n commutative: true\n }\n } // o.w. / not conventional\n }, {\n s: 'n^-1 -> 1/n',\n assuming: {\n multiply: {\n commutative: true\n }\n } // o.w. / not conventional\n }, {\n l: 'n^1',\n r: 'n'\n },\n // can be produced by power cancellation\n {\n s: 'n*(n1/n2) -> (n*n1)/n2',\n // '*' before '/'\n assuming: {\n multiply: {\n associative: true\n }\n }\n }, {\n s: 'n-(n1+n2) -> n-n1-n2',\n // '-' before '+'\n assuming: {\n addition: {\n associative: true,\n commutative: true\n }\n }\n },\n // { l: '(n1/n2)/n3', r: 'n1/(n2*n3)' },\n // { l: '(n*n1)/(n*n2)', r: 'n1/n2' },\n\n // simplifyConstant can leave an extra factor of 1, which can always\n // be eliminated, since the identity always commutes\n {\n l: '1*n',\n r: 'n',\n imposeContext: {\n multiply: {\n commutative: true\n }\n }\n }, {\n s: 'n1/(n2/n3) -> (n1*n3)/n2',\n assuming: {\n multiply: {\n associative: true\n }\n }\n }, {\n l: 'n1/(-n2)',\n r: '-n1/n2'\n }];\n\n /**\n * Takes any rule object as allowed by the specification in simplify\n * and puts it in a standard form used by applyRule\n */\n function _canonicalizeRule(ruleObject, context) {\n var newRule = {};\n if (ruleObject.s) {\n var lr = ruleObject.s.split('->');\n if (lr.length === 2) {\n newRule.l = lr[0];\n newRule.r = lr[1];\n } else {\n throw SyntaxError('Could not parse rule: ' + ruleObject.s);\n }\n } else {\n newRule.l = ruleObject.l;\n newRule.r = ruleObject.r;\n }\n newRule.l = removeParens(parse(newRule.l));\n newRule.r = removeParens(parse(newRule.r));\n for (var prop of ['imposeContext', 'repeat', 'assuming']) {\n if (prop in ruleObject) {\n newRule[prop] = ruleObject[prop];\n }\n }\n if (ruleObject.evaluate) {\n newRule.evaluate = parse(ruleObject.evaluate);\n }\n if (isAssociative(newRule.l, context)) {\n var nonCommutative = !isCommutative(newRule.l, context);\n var leftExpandsym;\n // Gen. the LHS placeholder used in this NC-context specific expansion rules\n if (nonCommutative) leftExpandsym = _getExpandPlaceholderSymbol();\n var makeNode = createMakeNodeFunction(newRule.l);\n var expandsym = _getExpandPlaceholderSymbol();\n newRule.expanded = {};\n newRule.expanded.l = makeNode([newRule.l, expandsym]);\n // Push the expandsym into the deepest possible branch.\n // This helps to match the newRule against nodes returned from getSplits() later on.\n flatten(newRule.expanded.l, context);\n unflattenr(newRule.expanded.l, context);\n newRule.expanded.r = makeNode([newRule.r, expandsym]);\n\n // In and for a non-commutative context, attempting with yet additional expansion rules makes\n // way for more matches cases of multi-arg expressions; such that associative rules (such as\n // 'n*n -> n^2') can be applied to exprs. such as 'a * b * b' and 'a * b * b * a'.\n if (nonCommutative) {\n // 'Non-commutative' 1: LHS (placeholder) only\n newRule.expandedNC1 = {};\n newRule.expandedNC1.l = makeNode([leftExpandsym, newRule.l]);\n newRule.expandedNC1.r = makeNode([leftExpandsym, newRule.r]);\n // 'Non-commutative' 2: farmost LHS and RHS placeholders\n newRule.expandedNC2 = {};\n newRule.expandedNC2.l = makeNode([leftExpandsym, newRule.expanded.l]);\n newRule.expandedNC2.r = makeNode([leftExpandsym, newRule.expanded.r]);\n }\n }\n return newRule;\n }\n\n /**\n * Parse the string array of rules into nodes\n *\n * Example syntax for rules:\n *\n * Position constants to the left in a product:\n * { l: 'n1 * c1', r: 'c1 * n1' }\n * n1 is any Node, and c1 is a ConstantNode.\n *\n * Apply difference of squares formula:\n * { l: '(n1 - n2) * (n1 + n2)', r: 'n1^2 - n2^2' }\n * n1, n2 mean any Node.\n *\n * Short hand notation:\n * 'n1 * c1 -> c1 * n1'\n */\n function _buildRules(rules, context) {\n // Array of rules to be used to simplify expressions\n var ruleSet = [];\n for (var i = 0; i < rules.length; i++) {\n var rule = rules[i];\n var newRule = void 0;\n var ruleType = typeof rule;\n switch (ruleType) {\n case 'string':\n rule = {\n s: rule\n };\n /* falls through */\n case 'object':\n newRule = _canonicalizeRule(rule, context);\n break;\n case 'function':\n newRule = rule;\n break;\n default:\n throw TypeError('Unsupported type of rule: ' + ruleType);\n }\n // console.log('Adding rule: ' + rules[i])\n // console.log(newRule)\n ruleSet.push(newRule);\n }\n return ruleSet;\n }\n var _lastsym = 0;\n function _getExpandPlaceholderSymbol() {\n return new SymbolNode('_p' + _lastsym++);\n }\n function _simplify(expr, rules) {\n var scope = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : createEmptyMap();\n var options = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : {};\n var debug = options.consoleDebug;\n rules = _buildRules(rules || simplify.rules, options.context);\n var res = resolve(expr, scope);\n res = removeParens(res);\n var visited = {};\n var str = res.toString({\n parenthesis: 'all'\n });\n while (!visited[str]) {\n visited[str] = true;\n _lastsym = 0; // counter for placeholder symbols\n var laststr = str;\n if (debug) console.log('Working on: ', str);\n for (var i = 0; i < rules.length; i++) {\n var rulestr = '';\n if (typeof rules[i] === 'function') {\n res = rules[i](res, options);\n if (debug) rulestr = rules[i].name;\n } else {\n flatten(res, options.context);\n res = applyRule(res, rules[i], options.context);\n if (debug) {\n rulestr = \"\".concat(rules[i].l.toString(), \" -> \").concat(rules[i].r.toString());\n }\n }\n if (debug) {\n var newstr = res.toString({\n parenthesis: 'all'\n });\n if (newstr !== laststr) {\n console.log('Applying', rulestr, 'produced', newstr);\n laststr = newstr;\n }\n }\n /* Use left-heavy binary tree internally,\n * since custom rule functions may expect it\n */\n unflattenl(res, options.context);\n }\n str = res.toString({\n parenthesis: 'all'\n });\n }\n return res;\n }\n function mapRule(nodes, rule, context) {\n var resNodes = nodes;\n if (nodes) {\n for (var i = 0; i < nodes.length; ++i) {\n var newNode = applyRule(nodes[i], rule, context);\n if (newNode !== nodes[i]) {\n if (resNodes === nodes) {\n resNodes = nodes.slice();\n }\n resNodes[i] = newNode;\n }\n }\n }\n return resNodes;\n }\n\n /**\n * Returns a simplfied form of node, or the original node if no simplification was possible.\n *\n * @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node\n * @param {Object | Function} rule\n * @param {Object} context -- information about assumed properties of operators\n * @return {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} The simplified form of `expr`, or the original node if no simplification was possible.\n */\n function applyRule(node, rule, context) {\n // console.log('Entering applyRule(\"', rule.l.toString({parenthesis:'all'}), '->', rule.r.toString({parenthesis:'all'}), '\",', node.toString({parenthesis:'all'}),')')\n\n // check that the assumptions for this rule are satisfied by the current\n // context:\n if (rule.assuming) {\n for (var symbol in rule.assuming) {\n for (var property in rule.assuming[symbol]) {\n if (hasProperty(symbol, property, context) !== rule.assuming[symbol][property]) {\n return node;\n }\n }\n }\n }\n var mergedContext = mergeContext(rule.imposeContext, context);\n\n // Do not clone node unless we find a match\n var res = node;\n\n // First replace our child nodes with their simplified versions\n // If a child could not be simplified, applying the rule to it\n // will have no effect since the node is returned unchanged\n if (res instanceof OperatorNode || res instanceof FunctionNode) {\n var newArgs = mapRule(res.args, rule, context);\n if (newArgs !== res.args) {\n res = res.clone();\n res.args = newArgs;\n }\n } else if (res instanceof ParenthesisNode) {\n if (res.content) {\n var newContent = applyRule(res.content, rule, context);\n if (newContent !== res.content) {\n res = new ParenthesisNode(newContent);\n }\n }\n } else if (res instanceof ArrayNode) {\n var newItems = mapRule(res.items, rule, context);\n if (newItems !== res.items) {\n res = new ArrayNode(newItems);\n }\n } else if (res instanceof AccessorNode) {\n var newObj = res.object;\n if (res.object) {\n newObj = applyRule(res.object, rule, context);\n }\n var newIndex = res.index;\n if (res.index) {\n newIndex = applyRule(res.index, rule, context);\n }\n if (newObj !== res.object || newIndex !== res.index) {\n res = new AccessorNode(newObj, newIndex);\n }\n } else if (res instanceof IndexNode) {\n var newDims = mapRule(res.dimensions, rule, context);\n if (newDims !== res.dimensions) {\n res = new IndexNode(newDims);\n }\n } else if (res instanceof ObjectNode) {\n var changed = false;\n var newProps = {};\n for (var prop in res.properties) {\n newProps[prop] = applyRule(res.properties[prop], rule, context);\n if (newProps[prop] !== res.properties[prop]) {\n changed = true;\n }\n }\n if (changed) {\n res = new ObjectNode(newProps);\n }\n }\n\n // Try to match a rule against this node\n var repl = rule.r;\n var matches = _ruleMatch(rule.l, res, mergedContext)[0];\n\n // If the rule is associative operator, we can try matching it while allowing additional terms.\n // This allows us to match rules like 'n+n' to the expression '(1+x)+x' or even 'x+1+x' if the operator is commutative.\n if (!matches && rule.expanded) {\n repl = rule.expanded.r;\n matches = _ruleMatch(rule.expanded.l, res, mergedContext)[0];\n }\n // Additional, non-commutative context expansion-rules\n if (!matches && rule.expandedNC1) {\n repl = rule.expandedNC1.r;\n matches = _ruleMatch(rule.expandedNC1.l, res, mergedContext)[0];\n if (!matches) {\n // Existence of NC1 implies NC2\n repl = rule.expandedNC2.r;\n matches = _ruleMatch(rule.expandedNC2.l, res, mergedContext)[0];\n }\n }\n if (matches) {\n // const before = res.toString({parenthesis: 'all'})\n\n // Create a new node by cloning the rhs of the matched rule\n // we keep any implicit multiplication state if relevant\n var implicit = res.implicit;\n res = repl.clone();\n if (implicit && 'implicit' in repl) {\n res.implicit = true;\n }\n\n // Replace placeholders with their respective nodes without traversing deeper into the replaced nodes\n res = res.transform(function (node) {\n if (node.isSymbolNode && hasOwnProperty(matches.placeholders, node.name)) {\n return matches.placeholders[node.name].clone();\n } else {\n return node;\n }\n });\n\n // const after = res.toString({parenthesis: 'all'})\n // console.log('Simplified ' + before + ' to ' + after)\n }\n\n if (rule.repeat && res !== node) {\n res = applyRule(res, rule, context);\n }\n return res;\n }\n\n /**\n * Get (binary) combinations of a flattened binary node\n * e.g. +(node1, node2, node3) -> [\n * +(node1, +(node2, node3)),\n * +(node2, +(node1, node3)),\n * +(node3, +(node1, node2))]\n *\n */\n function getSplits(node, context) {\n var res = [];\n var right, rightArgs;\n var makeNode = createMakeNodeFunction(node);\n if (isCommutative(node, context)) {\n for (var i = 0; i < node.args.length; i++) {\n rightArgs = node.args.slice(0);\n rightArgs.splice(i, 1);\n right = rightArgs.length === 1 ? rightArgs[0] : makeNode(rightArgs);\n res.push(makeNode([node.args[i], right]));\n }\n } else {\n // Keep order, but try all parenthesizations\n for (var _i = 1; _i < node.args.length; _i++) {\n var left = node.args[0];\n if (_i > 1) {\n left = makeNode(node.args.slice(0, _i));\n }\n rightArgs = node.args.slice(_i);\n right = rightArgs.length === 1 ? rightArgs[0] : makeNode(rightArgs);\n res.push(makeNode([left, right]));\n }\n }\n return res;\n }\n\n /**\n * Returns the set union of two match-placeholders or null if there is a conflict.\n */\n function mergeMatch(match1, match2) {\n var res = {\n placeholders: {}\n };\n\n // Some matches may not have placeholders; this is OK\n if (!match1.placeholders && !match2.placeholders) {\n return res;\n } else if (!match1.placeholders) {\n return match2;\n } else if (!match2.placeholders) {\n return match1;\n }\n\n // Placeholders with the same key must match exactly\n for (var key in match1.placeholders) {\n if (hasOwnProperty(match1.placeholders, key)) {\n res.placeholders[key] = match1.placeholders[key];\n if (hasOwnProperty(match2.placeholders, key)) {\n if (!_exactMatch(match1.placeholders[key], match2.placeholders[key])) {\n return null;\n }\n }\n }\n }\n for (var _key in match2.placeholders) {\n if (hasOwnProperty(match2.placeholders, _key)) {\n res.placeholders[_key] = match2.placeholders[_key];\n }\n }\n return res;\n }\n\n /**\n * Combine two lists of matches by applying mergeMatch to the cartesian product of two lists of matches.\n * Each list represents matches found in one child of a node.\n */\n function combineChildMatches(list1, list2) {\n var res = [];\n if (list1.length === 0 || list2.length === 0) {\n return res;\n }\n var merged;\n for (var i1 = 0; i1 < list1.length; i1++) {\n for (var i2 = 0; i2 < list2.length; i2++) {\n merged = mergeMatch(list1[i1], list2[i2]);\n if (merged) {\n res.push(merged);\n }\n }\n }\n return res;\n }\n\n /**\n * Combine multiple lists of matches by applying mergeMatch to the cartesian product of two lists of matches.\n * Each list represents matches found in one child of a node.\n * Returns a list of unique matches.\n */\n function mergeChildMatches(childMatches) {\n if (childMatches.length === 0) {\n return childMatches;\n }\n var sets = childMatches.reduce(combineChildMatches);\n var uniqueSets = [];\n var unique = {};\n for (var i = 0; i < sets.length; i++) {\n var s = JSON.stringify(sets[i]);\n if (!unique[s]) {\n unique[s] = true;\n uniqueSets.push(sets[i]);\n }\n }\n return uniqueSets;\n }\n\n /**\n * Determines whether node matches rule.\n *\n * @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} rule\n * @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} node\n * @param {Object} context -- provides assumed properties of operators\n * @param {Boolean} isSplit -- whether we are in process of splitting an\n * n-ary operator node into possible binary combinations.\n * Defaults to false.\n * @return {Object} Information about the match, if it exists.\n */\n function _ruleMatch(rule, node, context, isSplit) {\n // console.log('Entering _ruleMatch(' + JSON.stringify(rule) + ', ' + JSON.stringify(node) + ')')\n // console.log('rule = ' + rule)\n // console.log('node = ' + node)\n\n // console.log('Entering _ruleMatch(', rule.toString({parenthesis:'all'}), ', ', node.toString({parenthesis:'all'}), ', ', context, ')')\n var res = [{\n placeholders: {}\n }];\n if (rule instanceof OperatorNode && node instanceof OperatorNode || rule instanceof FunctionNode && node instanceof FunctionNode) {\n // If the rule is an OperatorNode or a FunctionNode, then node must match exactly\n if (rule instanceof OperatorNode) {\n if (rule.op !== node.op || rule.fn !== node.fn) {\n return [];\n }\n } else if (rule instanceof FunctionNode) {\n if (rule.name !== node.name) {\n return [];\n }\n }\n\n // rule and node match. Search the children of rule and node.\n if (node.args.length === 1 && rule.args.length === 1 || !isAssociative(node, context) && node.args.length === rule.args.length || isSplit) {\n // Expect non-associative operators to match exactly,\n // except in any order if operator is commutative\n var childMatches = [];\n for (var i = 0; i < rule.args.length; i++) {\n var childMatch = _ruleMatch(rule.args[i], node.args[i], context);\n if (childMatch.length === 0) {\n // Child did not match, so stop searching immediately\n break;\n }\n // The child matched, so add the information returned from the child to our result\n childMatches.push(childMatch);\n }\n if (childMatches.length !== rule.args.length) {\n if (!isCommutative(node, context) ||\n // exact match in order needed\n rule.args.length === 1) {\n // nothing to commute\n return [];\n }\n if (rule.args.length > 2) {\n /* Need to generate all permutations and try them.\n * It's a bit complicated, and unlikely to come up since there\n * are very few ternary or higher operators. So punt for now.\n */\n throw new Error('permuting >2 commutative non-associative rule arguments not yet implemented');\n }\n /* Exactly two arguments, try them reversed */\n var leftMatch = _ruleMatch(rule.args[0], node.args[1], context);\n if (leftMatch.length === 0) {\n return [];\n }\n var rightMatch = _ruleMatch(rule.args[1], node.args[0], context);\n if (rightMatch.length === 0) {\n return [];\n }\n childMatches = [leftMatch, rightMatch];\n }\n res = mergeChildMatches(childMatches);\n } else if (node.args.length >= 2 && rule.args.length === 2) {\n // node is flattened, rule is not\n // Associative operators/functions can be split in different ways so we check if the rule\n // matches for each of them and return their union.\n var splits = getSplits(node, context);\n var splitMatches = [];\n for (var _i2 = 0; _i2 < splits.length; _i2++) {\n var matchSet = _ruleMatch(rule, splits[_i2], context, true); // recursing at the same tree depth here\n splitMatches = splitMatches.concat(matchSet);\n }\n return splitMatches;\n } else if (rule.args.length > 2) {\n throw Error('Unexpected non-binary associative function: ' + rule.toString());\n } else {\n // Incorrect number of arguments in rule and node, so no match\n return [];\n }\n } else if (rule instanceof SymbolNode) {\n // If the rule is a SymbolNode, then it carries a special meaning\n // according to the first one or two characters of the symbol node name.\n // These meanings are expalined in the documentation for simplify()\n if (rule.name.length === 0) {\n throw new Error('Symbol in rule has 0 length...!?');\n }\n if (SUPPORTED_CONSTANTS[rule.name]) {\n // built-in constant must match exactly\n if (rule.name !== node.name) {\n return [];\n }\n } else {\n // wildcards are composed of up to two alphabetic or underscore characters\n switch (rule.name[1] >= 'a' && rule.name[1] <= 'z' ? rule.name.substring(0, 2) : rule.name[0]) {\n case 'n':\n case '_p':\n // rule matches _anything_, so assign this node to the rule.name placeholder\n // Assign node to the rule.name placeholder.\n // Our parent will check for matches among placeholders.\n res[0].placeholders[rule.name] = node;\n break;\n case 'c':\n case 'cl':\n // rule matches a ConstantNode\n if (isConstantNode(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 'v':\n // rule matches anything other than a ConstantNode\n if (!isConstantNode(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 'vl':\n // rule matches VariableNode\n if (isVariableNode(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 'cd':\n // rule matches a ConstantNode or unaryMinus-wrapped ConstantNode\n if (isNumericNode(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 'vd':\n // rule matches anything other than a ConstantNode or unaryMinus-wrapped ConstantNode\n if (!isNumericNode(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 'ce':\n // rule matches expressions that have a constant value\n if (isConstantExpression(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n case 've':\n // rule matches expressions that do not have a constant value\n if (!isConstantExpression(node)) {\n res[0].placeholders[rule.name] = node;\n } else {\n // mis-match: rule does not encompass current node\n return [];\n }\n break;\n default:\n throw new Error('Invalid symbol in rule: ' + rule.name);\n }\n }\n } else if (rule instanceof ConstantNode) {\n // Literal constant must match exactly\n if (!equal(rule.value, node.value)) {\n return [];\n }\n } else {\n // Some other node was encountered which we aren't prepared for, so no match\n return [];\n }\n\n // It's a match!\n\n // console.log('_ruleMatch(' + rule.toString() + ', ' + node.toString() + ') found a match')\n return res;\n }\n\n /**\n * Determines whether p and q (and all their children nodes) are identical.\n *\n * @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} p\n * @param {ConstantNode | SymbolNode | ParenthesisNode | FunctionNode | OperatorNode} q\n * @return {Object} Information about the match, if it exists.\n */\n function _exactMatch(p, q) {\n if (p instanceof ConstantNode && q instanceof ConstantNode) {\n if (!equal(p.value, q.value)) {\n return false;\n }\n } else if (p instanceof SymbolNode && q instanceof SymbolNode) {\n if (p.name !== q.name) {\n return false;\n }\n } else if (p instanceof OperatorNode && q instanceof OperatorNode || p instanceof FunctionNode && q instanceof FunctionNode) {\n if (p instanceof OperatorNode) {\n if (p.op !== q.op || p.fn !== q.fn) {\n return false;\n }\n } else if (p instanceof FunctionNode) {\n if (p.name !== q.name) {\n return false;\n }\n }\n if (p.args.length !== q.args.length) {\n return false;\n }\n for (var i = 0; i < p.args.length; i++) {\n if (!_exactMatch(p.args[i], q.args[i])) {\n return false;\n }\n }\n } else {\n return false;\n }\n return true;\n }\n return simplify;\n});","export * from \"-!../../../node_modules/mini-css-extract-plugin/dist/loader.js??ref--9-oneOf-1-0!../../../node_modules/css-loader/dist/cjs.js??ref--9-oneOf-1-1!../../../node_modules/vue-loader/lib/loaders/stylePostLoader.js!../../../node_modules/postcss-loader/src/index.js??ref--9-oneOf-1-2!../../../node_modules/sass-loader/dist/cjs.js??ref--9-oneOf-1-3!../../../node_modules/cache-loader/dist/cjs.js??ref--1-0!../../../node_modules/vue-loader/lib/index.js??vue-loader-options!./selecionarInstituto.vue?vue&type=style&index=0&id=51027264&prod&lang=scss\"","import _defineProperty from \"@babel/runtime/helpers/defineProperty\";\nimport { isBigNumber, isComplex, isNode, isUnit, typeOf } from '../../utils/is.js';\nimport { factory } from '../../utils/factory.js';\nimport { getPrecedence } from '../operators.js';\nvar name = 'ConditionalNode';\nvar dependencies = ['Node'];\nexport var createConditionalNode = /* #__PURE__ */factory(name, dependencies, _ref => {\n var {\n Node\n } = _ref;\n /**\n * Test whether a condition is met\n * @param {*} condition\n * @returns {boolean} true if condition is true or non-zero, else false\n */\n function testCondition(condition) {\n if (typeof condition === 'number' || typeof condition === 'boolean' || typeof condition === 'string') {\n return !!condition;\n }\n if (condition) {\n if (isBigNumber(condition)) {\n return !condition.isZero();\n }\n if (isComplex(condition)) {\n return !!(condition.re || condition.im);\n }\n if (isUnit(condition)) {\n return !!condition.value;\n }\n }\n if (condition === null || condition === undefined) {\n return false;\n }\n throw new TypeError('Unsupported type of condition \"' + typeOf(condition) + '\"');\n }\n class ConditionalNode extends Node {\n /**\n * A lazy evaluating conditional operator: 'condition ? trueExpr : falseExpr'\n *\n * @param {Node} condition Condition, must result in a boolean\n * @param {Node} trueExpr Expression evaluated when condition is true\n * @param {Node} falseExpr Expression evaluated when condition is true\n *\n * @constructor ConditionalNode\n * @extends {Node}\n */\n constructor(condition, trueExpr, falseExpr) {\n super();\n if (!isNode(condition)) {\n throw new TypeError('Parameter condition must be a Node');\n }\n if (!isNode(trueExpr)) {\n throw new TypeError('Parameter trueExpr must be a Node');\n }\n if (!isNode(falseExpr)) {\n throw new TypeError('Parameter falseExpr must be a Node');\n }\n this.condition = condition;\n this.trueExpr = trueExpr;\n this.falseExpr = falseExpr;\n }\n get type() {\n return name;\n }\n get isConditionalNode() {\n return true;\n }\n\n /**\n * Compile a node into a JavaScript function.\n * This basically pre-calculates as much as possible and only leaves open\n * calculations which depend on a dynamic scope with variables.\n * @param {Object} math Math.js namespace with functions and constants.\n * @param {Object} argNames An object with argument names as key and `true`\n * as value. Used in the SymbolNode to optimize\n * for arguments from user assigned functions\n * (see FunctionAssignmentNode) or special symbols\n * like `end` (see IndexNode).\n * @return {function} Returns a function which can be called like:\n * evalNode(scope: Object, args: Object, context: *)\n */\n _compile(math, argNames) {\n var evalCondition = this.condition._compile(math, argNames);\n var evalTrueExpr = this.trueExpr._compile(math, argNames);\n var evalFalseExpr = this.falseExpr._compile(math, argNames);\n return function evalConditionalNode(scope, args, context) {\n return testCondition(evalCondition(scope, args, context)) ? evalTrueExpr(scope, args, context) : evalFalseExpr(scope, args, context);\n };\n }\n\n /**\n * Execute a callback for each of the child nodes of this node\n * @param {function(child: Node, path: string, parent: Node)} callback\n */\n forEach(callback) {\n callback(this.condition, 'condition', this);\n callback(this.trueExpr, 'trueExpr', this);\n callback(this.falseExpr, 'falseExpr', this);\n }\n\n /**\n * Create a new ConditionalNode whose children are the results of calling\n * the provided callback function for each child of the original node.\n * @param {function(child: Node, path: string, parent: Node): Node} callback\n * @returns {ConditionalNode} Returns a transformed copy of the node\n */\n map(callback) {\n return new ConditionalNode(this._ifNode(callback(this.condition, 'condition', this)), this._ifNode(callback(this.trueExpr, 'trueExpr', this)), this._ifNode(callback(this.falseExpr, 'falseExpr', this)));\n }\n\n /**\n * Create a clone of this node, a shallow copy\n * @return {ConditionalNode}\n */\n clone() {\n return new ConditionalNode(this.condition, this.trueExpr, this.falseExpr);\n }\n\n /**\n * Get string representation\n * @param {Object} options\n * @return {string} str\n */\n _toString(options) {\n var parenthesis = options && options.parenthesis ? options.parenthesis : 'keep';\n var precedence = getPrecedence(this, parenthesis, options && options.implicit);\n\n // Enclose Arguments in parentheses if they are an OperatorNode\n // or have lower or equal precedence\n // NOTE: enclosing all OperatorNodes in parentheses is a decision\n // purely based on aesthetics and readability\n var condition = this.condition.toString(options);\n var conditionPrecedence = getPrecedence(this.condition, parenthesis, options && options.implicit);\n if (parenthesis === 'all' || this.condition.type === 'OperatorNode' || conditionPrecedence !== null && conditionPrecedence <= precedence) {\n condition = '(' + condition + ')';\n }\n var trueExpr = this.trueExpr.toString(options);\n var truePrecedence = getPrecedence(this.trueExpr, parenthesis, options && options.implicit);\n if (parenthesis === 'all' || this.trueExpr.type === 'OperatorNode' || truePrecedence !== null && truePrecedence <= precedence) {\n trueExpr = '(' + trueExpr + ')';\n }\n var falseExpr = this.falseExpr.toString(options);\n var falsePrecedence = getPrecedence(this.falseExpr, parenthesis, options && options.implicit);\n if (parenthesis === 'all' || this.falseExpr.type === 'OperatorNode' || falsePrecedence !== null && falsePrecedence <= precedence) {\n falseExpr = '(' + falseExpr + ')';\n }\n return condition + ' ? ' + trueExpr + ' : ' + falseExpr;\n }\n\n /**\n * Get a JSON representation of the node\n * @returns {Object}\n */\n toJSON() {\n return {\n mathjs: name,\n condition: this.condition,\n trueExpr: this.trueExpr,\n falseExpr: this.falseExpr\n };\n }\n\n /**\n * Instantiate an ConditionalNode from its JSON representation\n * @param {Object} json\n * An object structured like\n * ```\n * {\"mathjs\": \"ConditionalNode\",\n * \"condition\": ...,\n * \"trueExpr\": ...,\n * \"falseExpr\": ...}\n * ```\n * where mathjs is optional\n * @returns {ConditionalNode}\n */\n static fromJSON(json) {\n return new ConditionalNode(json.condition, json.trueExpr, json.falseExpr);\n }\n\n /**\n * Get HTML representation\n * @param {Object} options\n * @return {string} str\n */\n toHTML(options) {\n var parenthesis = options && options.parenthesis ? options.parenthesis : 'keep';\n var precedence = getPrecedence(this, parenthesis, options && options.implicit);\n\n // Enclose Arguments in parentheses if they are an OperatorNode\n // or have lower or equal precedence\n // NOTE: enclosing all OperatorNodes in parentheses is a decision\n // purely based on aesthetics and readability\n var condition = this.condition.toHTML(options);\n var conditionPrecedence = getPrecedence(this.condition, parenthesis, options && options.implicit);\n if (parenthesis === 'all' || this.condition.type === 'OperatorNode' || conditionPrecedence !== null && conditionPrecedence <= precedence) {\n condition = '